Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, we propose a novel residual-based data-driven closure strategy for reduced order models (ROMs) of under-resolved, convection-dominated problems. The new ROM closure model is constructed in a variational multiscale (VMS) framework by using the available full order model data and a model form ansatz that depends on the ROM residual. We emphasize that this closure modeling strategy is fundamentally different from the current data-driven ROM closures, which generally depend on the ROM coefficients. We investigate the new residual-based data-driven VMS ROM closure strategy in the numerical simulation of three test problems: (i) a one-dimensional parameter-dependent advection-diffusion problem; (ii) a two-dimensional time-dependent advection-diffusion-reaction problem with a small diffusion coefficient ($$\varepsilon = 1e-4$$ ); and (iii) a two-dimensional flow past a cylinder at Reynolds number$$Re=1000$$ . Our numerical investigation shows that the new residual-based data-driven VMS-ROM is more accurate than the standard coefficient-based data-driven VMS-ROM.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
